CalejoControl/IMPLEMENTATION_SUMMARY.md

109 lines
4.1 KiB
Markdown
Raw Permalink Normal View History

# Pump Control Preprocessing Implementation Summary
## Overview
Successfully implemented configurable pump control preprocessing logic for converting MPC outputs to pump actuation signals in the Calejo Control system.
## What Was Implemented
### 1. Core Pump Control Preprocessor (`src/core/pump_control_preprocessor.py`)
- **Three configurable control logics**:
- **MPC-Driven Adaptive Hysteresis**: Primary logic for normal operation with MPC + live level data
- **State-Preserving MPC**: Enhanced logic to minimize pump state changes
- **Backup Fixed-Band Control**: Fallback logic for when level sensors fail
- **State tracking**: Maintains pump state and switch timing to prevent excessive cycling
- **Safety integration**: Built-in safety overrides for emergency conditions
### 2. Integration with Existing System
- **Extended preprocessing system**: Added `pump_control_logic` rule type to existing preprocessing framework
- **Setpoint manager integration**: New `PumpControlPreprocessorCalculator` class for setpoint calculation
- **Protocol mapping support**: Configurable through dashboard protocol mappings
### 3. Configuration Methods
- **Protocol mapping preprocessing**: Configure via dashboard with JSON rules
- **Pump metadata configuration**: Set control logic in pump configuration
- **Control type selection**: Use `PUMP_CONTROL_PREPROCESSOR` control type
## Key Features
### Safety & Reliability
- **Safety overrides**: Automatic shutdown on level limit violations
- **Minimum switch intervals**: Prevents excessive pump cycling
- **State preservation**: Minimizes equipment wear
- **Fallback modes**: Graceful degradation when sensors fail
### Flexibility
- **Per-pump configuration**: Different logics for different pumps
- **Parameter tuning**: Fine-tune each logic for specific station requirements
- **Multiple integration points**: Protocol mappings, pump config, or control type
### Monitoring & Logging
- **Comprehensive logging**: Each control decision logged with reasoning
- **Performance tracking**: Monitor pump state changes and efficiency
- **Safety event tracking**: Record all safety overrides
## Files Created/Modified
### New Files
- `src/core/pump_control_preprocessor.py` - Core control logic implementation
- `docs/PUMP_CONTROL_LOGIC_CONFIGURATION.md` - Comprehensive documentation
- `examples/pump_control_configuration.json` - Configuration examples
- `test_pump_control_logic.py` - Test suite
### Modified Files
- `src/dashboard/configuration_manager.py` - Extended preprocessing system
- `src/core/setpoint_manager.py` - Added new calculator class
## Testing
- **Unit tests**: All three control logics tested with various scenarios
- **Integration tests**: Verified integration with configuration manager
- **Safety tests**: Confirmed safety overrides work correctly
- **Import tests**: Verified system integration
## Usage Examples
### Configuration via Protocol Mapping
```json
{
"preprocessing_enabled": true,
"preprocessing_rules": [
{
"type": "pump_control_logic",
"parameters": {
"logic_type": "mpc_adaptive_hysteresis",
"control_params": {
"safety_min_level": 0.5,
"adaptive_buffer": 0.5
}
}
}
]
}
```
### Configuration via Pump Metadata
```sql
UPDATE pumps
SET control_type = 'PUMP_CONTROL_PREPROCESSOR',
control_parameters = '{
"control_logic": "mpc_adaptive_hysteresis",
"control_params": {
"safety_min_level": 0.5,
"adaptive_buffer": 0.5
}
}'
WHERE station_id = 'station1' AND pump_id = 'pump1';
```
## Benefits
1. **Improved pump longevity** through state preservation
2. **Better energy efficiency** by minimizing unnecessary switching
3. **Enhanced safety** with multiple protection layers
4. **Flexible configuration** for different operational requirements
5. **Graceful degradation** when sensors or MPC fail
6. **Comprehensive monitoring** for operational insights
## Next Steps
- Deploy to test environment
- Monitor performance and adjust parameters
- Extend to other actuator types (valves, blowers)
- Add more sophisticated control algorithms