#!/usr/bin/env python3 """ Mock Optimizer Server for testing Simulates optimization service for industrial processes """ import json import random import time from datetime import datetime, timedelta from flask import Flask, jsonify, request app = Flask(__name__) # Mock optimization models optimization_models = { "energy_optimization": { "name": "Energy Consumption Optimizer", "description": "Optimizes energy usage while maintaining production targets", "parameters": ["power_load", "time_of_day", "production_rate"], "outputs": ["optimal_power_setpoint", "recommended_actions", "estimated_savings", "confidence"] }, "production_optimization": { "name": "Production Efficiency Optimizer", "description": "Maximizes production efficiency and throughput", "parameters": ["raw_material_quality", "machine_utilization", "operator_skill"], "outputs": ["optimal_production_rate", "efficiency_gain", "recommended_adjustments"] }, "cost_optimization": { "name": "Cost Reduction Optimizer", "description": "Minimizes operational costs while maintaining quality", "parameters": ["energy_cost", "labor_cost", "maintenance_cost"], "outputs": ["optimal_cost_structure", "cost_reduction", "implementation_plan"] } } # Optimization history optimization_history = [] def generate_optimization_id(): """Generate unique optimization ID""" return f"OPT_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{random.randint(1000, 9999)}" def run_energy_optimization(data): """Run energy optimization""" power_load = data.get("power_load", 450.0) time_of_day = data.get("time_of_day", 12) production_rate = data.get("production_rate", 95.0) # Mock optimization logic if time_of_day >= 6 and time_of_day <= 18: # Daytime optimization optimal_power = power_load * 0.85 # Reduce power during peak hours savings = power_load * 0.15 * 0.12 # 15% reduction at $0.12/kWh else: # Nighttime optimization optimal_power = power_load * 0.95 # Slight reduction at night savings = power_load * 0.05 * 0.08 # 5% reduction at $0.08/kWh # Adjust based on production rate if production_rate < 80: optimal_power *= 0.9 savings *= 1.1 elif production_rate > 95: optimal_power *= 1.05 savings *= 0.9 return { "optimal_power_setpoint": round(optimal_power, 2), "recommended_actions": [ "Adjust compressor speed to 85%", "Optimize pump sequencing", "Implement variable frequency drive" ], "estimated_savings": round(savings, 2), "confidence": random.uniform(0.85, 0.95) } def run_production_optimization(data): """Run production optimization""" raw_material_quality = data.get("raw_material_quality", 85.0) machine_utilization = data.get("machine_utilization", 92.0) operator_skill = data.get("operator_skill", 88.0) # Mock optimization logic base_rate = 100.0 # Adjust based on factors quality_factor = raw_material_quality / 100.0 utilization_factor = machine_utilization / 100.0 skill_factor = operator_skill / 100.0 optimal_rate = base_rate * quality_factor * utilization_factor * skill_factor efficiency_gain = (optimal_rate - base_rate) / base_rate * 100 return { "optimal_production_rate": round(optimal_rate, 2), "efficiency_gain": round(efficiency_gain, 2), "recommended_adjustments": [ "Increase raw material inspection frequency", "Optimize machine maintenance schedule", "Provide operator training on efficiency techniques" ] } def run_cost_optimization(data): """Run cost optimization""" energy_cost = data.get("energy_cost", 55.0) labor_cost = data.get("labor_cost", 30.0) maintenance_cost = data.get("maintenance_cost", 15.0) total_cost = energy_cost + labor_cost + maintenance_cost # Mock optimization logic optimal_energy = energy_cost * 0.9 # 10% reduction optimal_labor = labor_cost * 0.95 # 5% reduction optimal_maintenance = maintenance_cost * 1.05 # 5% increase for better maintenance optimal_total = optimal_energy + optimal_labor + optimal_maintenance cost_reduction = total_cost - optimal_total return { "optimal_cost_structure": { "energy": round(optimal_energy, 2), "labor": round(optimal_labor, 2), "maintenance": round(optimal_maintenance, 2), "total": round(optimal_total, 2) }, "cost_reduction": round(cost_reduction, 2), "implementation_plan": [ "Implement energy monitoring system", "Optimize workforce scheduling", "Increase preventive maintenance frequency" ] } def generate_forecast(hours=24): """Generate forecast data""" forecast = [] base_time = datetime.now() for i in range(hours): timestamp = base_time + timedelta(hours=i) hour = timestamp.hour # Generate realistic forecast data if hour >= 6 and hour <= 18: # Daytime values energy_consumption = random.uniform(450, 550) production_rate = random.uniform(95, 105) efficiency = random.uniform(85, 92) cost = random.uniform(50, 60) else: # Nighttime values energy_consumption = random.uniform(350, 450) production_rate = random.uniform(80, 95) efficiency = random.uniform(78, 85) cost = random.uniform(40, 50) forecast.append({ "timestamp": timestamp.isoformat(), "energy_consumption": round(energy_consumption, 2), "production_rate": round(production_rate, 2), "efficiency": round(efficiency, 2), "cost": round(cost, 2) }) return forecast @app.route('/health', methods=['GET']) def health(): """Health check endpoint""" return jsonify({ "status": "healthy", "service": "mock-optimizer", "timestamp": datetime.now().isoformat(), "models_available": len(optimization_models) }) @app.route('/api/v1/models', methods=['GET']) def get_models(): """Get available optimization models""" return jsonify({ "models": optimization_models, "timestamp": datetime.now().isoformat() }) @app.route('/api/v1/optimize/', methods=['POST']) def run_optimization(model_name): """Run optimization with specified model""" if model_name not in optimization_models: return jsonify({"error": f"Model '{model_name}' not found"}), 404 data = request.json if not data: return jsonify({"error": "No data provided"}), 400 start_time = time.time() # Run appropriate optimization if model_name == "energy_optimization": result = run_energy_optimization(data) elif model_name == "production_optimization": result = run_production_optimization(data) elif model_name == "cost_optimization": result = run_cost_optimization(data) else: return jsonify({"error": "Model not implemented"}), 501 processing_time = round(time.time() - start_time, 3) optimization_id = generate_optimization_id() # Add to history optimization_history.append({ "optimization_id": optimization_id, "model": model_name, "timestamp": datetime.now().isoformat(), "processing_time": processing_time }) return jsonify({ "optimization_id": optimization_id, "model": model_name, "result": result, "processing_time": processing_time, "timestamp": datetime.now().isoformat() }) @app.route('/api/v1/history', methods=['GET']) def get_history(): """Get optimization history""" return jsonify({ "history": optimization_history[-10:], # Last 10 optimizations "total_optimizations": len(optimization_history), "timestamp": datetime.now().isoformat() }) @app.route('/api/v1/forecast', methods=['POST']) def generate_optimization_forecast(): """Generate optimization forecast""" data = request.json or {} hours = data.get("hours", 24) if hours > 168: # Max 1 week return jsonify({"error": "Forecast horizon too long. Maximum 168 hours (1 week)"}), 400 forecast = generate_forecast(hours) return jsonify({ "forecast": forecast, "generated_at": datetime.now().isoformat(), "horizon_hours": hours }) @app.route('/api/v1/status/', methods=['GET']) def get_optimization_status(optimization_id): """Get status of specific optimization""" for opt in optimization_history: if opt["optimization_id"] == optimization_id: return jsonify({ "optimization_id": optimization_id, "status": "completed", "model": opt["model"], "completed_at": opt["timestamp"], "processing_time": opt["processing_time"] }) return jsonify({"error": f"Optimization '{optimization_id}' not found"}), 404 if __name__ == '__main__': print("🧠 Starting Mock Optimizer Server on port 8082...") print("📊 Available endpoints:") print(" GET /health") print(" GET /api/v1/models") print(" POST /api/v1/optimize/") print(" GET /api/v1/history") print(" POST /api/v1/forecast") print(" GET /api/v1/status/") app.run(host='0.0.0.0', port=8082, debug=False)